Manifold learning on brain functional networks in aging
نویسندگان
چکیده
We propose a new analysis framework to utilize the full information of brain functional networks for computing the mean of a set of brain functional networks and embedding brain functional networks into a low-dimensional space in which traditional regression and classification analyses can be easily employed. For this, we first represent the brain functional network by a symmetric positive matrix computed using sparse inverse covariance estimation. We then impose a Log-Euclidean Riemannian manifold structure on brain functional networks whose norm gives a convenient and practical way to define a mean. Finally, based on the fact that the computation of linear operations can be done in the tangent space of this Riemannian manifold, we adopt Locally Linear Embedding (LLE) to the Log-Euclidean Riemannian manifold space in order to embed the brain functional networks into a low-dimensional space. We show that the integration of the Log-Euclidean manifold with LLE provides more efficient and succinct representation of the functional network and facilitates regression analysis, such as ridge regression, on the brain functional network to more accurately predict age when compared to that of the Euclidean space of functional networks with LLE. Interestingly, using the Log-Euclidean analysis framework, we demonstrate the integration and segregation of cortical-subcortical networks as well as among the salience, executive, and emotional networks across lifespan.
منابع مشابه
Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear a...
متن کاملبررسی اثر تحریکات الکتریکی مغز بر میزان یادگیری و مهارت حرکتی در افراد سالمند سالم: مروری نظام مند
Background and purpose: Aging is associated with brain changes and reduction in motor skill acquisi­tion that can limit its functional capacity. One of the effective interventions is using transcranial direct current stimulation (tDCS). The aim of this systematic review was to assess the effect of tDCS on learning and motor skill in healthy older adults. Materials and methods: A litera...
متن کاملBrain Functional Connectivity Changes During Learning of Time Discrimination
The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...
متن کاملAge-Related Reorganizational Changes in Modularity and Functional Connectivity of Human Brain Networks
The human brain undergoes both morphological and functional modifications across the human lifespan. It is important to understand the aspects of brain reorganization that are critical in normal aging. To address this question, one approach is to investigate age-related topological changes of the brain. In this study, we developed a brain network model using graph theory methods applied to the ...
متن کاملDiscriminant analysis of functional connectivity patterns on Grassmann manifold
The functional brain networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive function and brain disorders. Rather than analyzing each network encoded by a spatial independent component separately, we propose a novel algorithm for discriminant analysis of functional brain networks jointly at an ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2015